Search results for " 13H10"

showing 4 items of 4 documents

F-signature of pairs and the asymptotic behavior of Frobenius splittings

2012

We generalize $F$-signature to pairs $(R,D)$ where $D$ is a Cartier subalgebra on $R$ as defined by the first two authors. In particular, we show the existence and positivity of the $F$-signature for any strongly $F$-regular pair. In one application, we answer an open question of I. Aberbach and F. Enescu by showing that the $F$-splitting ratio of an arbitrary $F$-pure local ring is strictly positive. Furthermore, we derive effective methods for computing the $F$-signature and the $F$-splitting ratio in the spirit of the work of R. Fedder.

Pure mathematicsGeneral Mathematics13A35 13D40 14B05 13H10010102 general mathematicsSubalgebraLocal ringSplitting primeF-regularCommutative Algebra (math.AC)Mathematics - Commutative AlgebraF-signatureF-splitting ratio01 natural sciencesF-pureMathematics - Algebraic GeometryCartier algebra0103 physical sciencesFOS: Mathematics010307 mathematical physics0101 mathematicsSignature (topology)Algebraic Geometry (math.AG)Mathematics
researchProduct

Multiprojective spaces and the arithmetically Cohen-Macaulay property

2019

AbstractIn this paper we study the arithmetically Cohen-Macaulay (ACM) property for sets of points in multiprojective spaces. Most of what is known is for ℙ1× ℙ1and, more recently, in (ℙ1)r. In ℙ1× ℙ1the so called inclusion property characterises the ACM property. We extend the definition in any multiprojective space and we prove that the inclusion property implies the ACM property in ℙm× ℙn. In such an ambient space it is equivalent to the so-called (⋆)-property. Moreover, we start an investigation of the ACM property in ℙ1× ℙn. We give a new construction that highlights how different the behavior of the ACM property is in this setting.

Pure mathematicsArithmetically Cohen-Macaulay multiprojective spacesProperty (philosophy)points in multiprojective spaces arithmetically Cohen-Macaulay linkageGeneral MathematicsStar (graph theory)Space (mathematics)Commutative Algebra (math.AC)01 natural sciencesMathematics - Algebraic Geometryarithmetically Cohen-MacaulayTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY0103 physical sciencesFOS: Mathematics0101 mathematicsAlgebraic Geometry (math.AG)Mathematics010102 general mathematics14M05 13C14 13C40 13H10 13A15Mathematics - Commutative Algebrapoints in multiprojective spacesAmbient spaceSettore MAT/02 - Algebra010307 mathematical physicsSettore MAT/03 - Geometrialinkage
researchProduct

Maximal Cohen-Macaulay Modules over the Affine Cone of the Simple Node

2005

A concrete description of all graded maximal Cohen-Macaulay modules of rank one and two over the affine cone of the simple node (a non-isolated singularity) is given. For this purpose we construct an alghoritm that provides extensions of MCM modules over an arbitrary hypersurface.

Mathematics - Algebraic GeometryMathematics::Commutative AlgebraFOS: MathematicsCommutative Algebra (math.AC)Mathematics - Commutative AlgebraAlgebraic Geometry (math.AG)13C14 13H1014H60 14H45
researchProduct

F-signature of pairs: Continuity, p-fractals and minimal log discrepancies

2011

This paper contains a number of observations on the {$F$-signature} of triples $(R,\Delta,\ba^t)$ introduced in our previous joint work. We first show that the $F$-signature $s(R,\Delta,\ba^t)$ is continuous as a function of $t$, and for principal ideals $\ba$ even convex. We then further deduce, for fixed $t$, that the $F$-signature is lower semi-continuous as a function on $\Spec R$ when $R$ is regular and $\ba$ is principal. We also point out the close relationship of the signature function in this setting to the works of Monsky and Teixeira on Hilbert-Kunz multiplicity and $p$-fractals. Finally, we conclude by showing that the minimal log discrepancy of an arbitrary triple $(R,\Delta,\b…

General Mathematics010102 general mathematicsRegular polygonMultiplicity (mathematics)Mathematics - Commutative AlgebraCommutative Algebra (math.AC)01 natural sciencesUpper and lower bounds13A35 13D40 14B05 13H10 14F18CombinatoricsMathematics - Algebraic GeometryFractalClose relationship0103 physical sciencesFOS: Mathematics010307 mathematical physics0101 mathematicsAlgebraic Geometry (math.AG)Mathematics
researchProduct